
Improving Generative LLMs
DL4DS – Spring 2025

DS542 Gardos – Understanding Deep Learning, Other Content Cited 1

https://udlbook.github.io/udlbook/

April/May Dates
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

April 1 2 3
Xformers Part 2

4 5

6 7 8
Industry Talk

9 10
Improving LLMs

11 12

13 14 15
LLM RLHF

16 17
GANs

18 19

20 21 22
VAEs

23 24
Diffusion Models

25 26

27 28 29
★ Project
Presentations 1 ★

30 May 1
★ Project
Presentations 2★

2 3

4 5
Project Reports Due

6 7 8 8 10

Finals Week

2

You are here

Topics

• LLM Training Process
• Pre-training
• Classifier Fine-Tuning
• Instruction (Chat) Fine-Tuning
• Preference Tuning

• Evaluating LLMs
• Improving LLMs with RAG

• Evaluating LLMs

• Parameter Efficient Fine-Tuning: Low-Rank Adaptation

3

LLM Generative Flow

4

Token
Encoding &

Linear
Embedding

Token
DecodingTransformer Token

Selection

Query Response

LLM Generative Flow

• How do we improve the response?
• How do we evaluate the response?

5

Token
Encoding &

Linear
Embedding

Token
DecodingTransformer Token

Selection

Query Response

6LLMs-from-scratch, Sebastian Raschka

https://github.com/rasbt/LLMs-from-scratch

7https://magazine.sebastianraschka.com/p/understanding-reasoning-llms

Web search
LLMs RAG Topic

Chatbots
Multimodal

LLMs

Code
Assistants Agents

Distilled &
cheap models

Reasoning
Models

https://magazine.sebastianraschka.com/p/understanding-reasoning-llms

How do we build a chat model?

8
State of GPT, Andrej Karpathy, MS Build Keynote

https://youtu.be/bZQun8Y4L2A?si=Sv66kPGvIVgNQKDY

Pre-Training

9LLMs-from-scratch, Sebastian Raschka

https://github.com/rasbt/LLMs-from-scratch

10S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

11S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

12S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

13S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

14S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

15S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

16S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

Classifier Finetuning

17S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

18S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

Example: Spam/Ham Classifier

19S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

20S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

21S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

22S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

23S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

24S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

25S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

26S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

27S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

Alpaca Instruction Tuning Dataset

28Alpaca instruction tuning dataset: 50K, LIMA instruction tuning: 1K

LIMA: Finetuning with only 1K instructions

29

Refine responses for style or safety
Reward preferred responses

30S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

Generative LLM Evaluations

Evaluate for
• Accuracy (is it factual or hallucinated?)
• Relevance (is it answering the question?)
• Bias, Toxicity (Is it fair? Or even worse is it racist or toxic?)
• Diversity of Response (does it always give same response? or equally

useful diverse responses?)

31

Ways to Evaluate
• Find a benchmark that matches your task

• HellaSwag (which evaluates how well an LLM can complete a sentence),
• TruthfulQA (measuring truthfulness of model responses), and
• MMLU (which measures how well the LLM can multitask),
• WinoGrande (commonsense reasoning),
• GSM8K, (arithmetic reasoning), etc.

• Create your own evaluation prompt/response pairs –
• need thousands!

• Use an LLM to evaluate your LLM!

32
See: https://arize.com/blog-course/llm-evaluation-the-definitive-guide/ for a nice overview

https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2009.03300
https://winogrande.allenai.org/
https://github.com/dvlab-research/MR-GSM8K
https://arize.com/blog-course/llm-evaluation-the-definitive-guide/

33S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

34S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

35S. Raschka, "Developing an LLM: Building, Training, Finetuning"

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK

Model vs System Evals

36
See: https://arize.com/blog-course/llm-evaluation-the-definitive-guide/ for a nice overview

Useful for choosing a model or deciding when
to switch.

Useful for prompt tuning and monitoring over time.

https://arize.com/blog-course/llm-evaluation-the-definitive-guide/

37https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Open LLM Leaderboard

Archived!

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

HF OpenLLM leaderboard became too easy
Models plateaued

38https://huggingface.co/spaces/open-llm-leaderboard/blog

https://huggingface.co/spaces/open-llm-leaderboard/blog

HF OpenLLM leaderboard became too easy
Models plateaued

39https://huggingface.co/spaces/open-llm-leaderboard/blog

https://huggingface.co/spaces/open-llm-leaderboard/blog

Crowd-Sourcing Evaluations
User Feedback

40

https://lmarena.ai/?leaderboard

https://lmarena.ai/?leaderboard

lmsys.org evolved

41

Topics

• Generative LLM flow and how to evaluate
• Improve LLM performance by prompting strategies
• Improving with retrieval augmentation
• Building more complex systems with LLMs: ”Cognitive Architectures”

42

Retrieval-Augmented Generation (RAG)
RAG enhances LLMs by referencing external knowledge to generate relevant
responses.
• Integrates external data into LLM text generation.
• Reduces hallucination, improves response relevance.
• Works with

• Unstructured data (e.g. documents)
• Structured data (e.g. SQL data)
• Code (e.g. python)

RAG Architecture

Typical RAG application has two main components:
• Loading and Indexing:

• A pipeline for ingesting data from a source and indexing it
• Usually happens offline

• Retrieval and Generation:
• Takes user query at run time and retrieves relevant data from the index and

passes it to the model

44
https://python.langchain.com/docs/use_cases/question_answering/

https://python.langchain.com/docs/use_cases/question_answering/

RAG – Loading and Indexing

45
https://python.langchain.com/docs/use_cases/question_answering/

https://python.langchain.com/docs/use_cases/question_answering/

RAG – Load
Load the data, e.g.
• PDFs
• HTML
• Plain text
• Images, video, audio
• Structured data (SQL, CSV/TSV, …)
• JSON
• URLs
• …

46https://python.langchain.com/docs/use_cases/question_answering/

See for example: https://python.langchain.com/docs/modules/data_connection/document_loaders/

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/document_loaders/

RAG – Split
Break large documents into
smaller chunks.
Easier to:
• index
• pass to model
• search
• fit into model’s context window

47https://python.langchain.com/docs/use_cases/question_answering/

See for example: https://python.langchain.com/docs/modules/data_connection/document_transformers/

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/document_transformers/

RAG – Embed
• Encode (e.g. with Byte Pair

Encoding) and
• Transform to embedding vectors

with the learned embedding
model.

48https://python.langchain.com/docs/use_cases/question_answering/

See for example: https://python.langchain.com/docs/modules/data_connection/text_embedding/

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/text_embedding/

RAG – Store
• Store the data in some kind of Vector Store
• e.g. Chroma, FAISS, Lance, Pinecone, etc…

49https://python.langchain.com/docs/use_cases/question_answering/

See for example: https://python.langchain.com/docs/modules/data_connection/vectorstores/

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/vectorstores/

RAG – Retrieval and Generation

50https://python.langchain.com/docs/use_cases/question_answering/

https://python.langchain.com/docs/use_cases/question_answering/

RAG – Retrieval

51https://python.langchain.com/docs/modules/data_connection/vectorstores/

https://python.langchain.com/docs/modules/data_connection/vectorstores/

RAG – Retrieval Similarity Measure

52

L2 Norm*: 𝑑 = ∑! 𝐴! − 𝐵! "

Inner Product: 𝑑 = 1 − ∑!(𝐴!×𝐵!)

Cosine Similarity: 1 − ∑!(%!×'!)

∑! %!
" ∑!('!

"

https://docs.trychroma.com/usage-guide#changing-the-distance-function

* Default on Chroma Vector Database

https://docs.trychroma.com/usage-guide

Is simple similarity measure
between query and document
the best approach?

53

RAG – Other Query-Document Matching Approaches
1. BERT and Variants for Query-Document Matching

BERT:
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805. This foundational paper introduces BERT and its methodology for language understanding, which has been widely applied to
information retrieval tasks.

Application in Information Retrieval:
Nogueira, R., & Cho, K. (2019). Passage Re-ranking with BERT. arXiv:1901.04085. This work explores how BERT can be used for re-ranking search results,
demonstrating its effectiveness in improving information retrieval systems. https://arxiv.org/abs/1901.04085

2. Fine-tuning for Specific Tasks
Fine-Tuning BERT for Search:

MacAvaney, S., Cohan, A., & Goharian, N. (2019). CEDR: Contextualized Embeddings for Document Ranking. SIGIR. This paper discusses fine-tuning BERT
with contextual embeddings specifically for document ranking, providing insights into adapting Transformer models for search tasks.
https://dl.acm.org/doi/abs/10.1145/3331184.3331317

3. Dual-encoder and Cross-encoder Architectures
Dual-Encoders for Efficient Retrieval:

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020). Dense Passage Retrieval for Open-Domain Question Answering.
EMNLP. This paper introduces a method using dense vector representations for passages and questions to improve open-domain question answering.
https://arxiv.org/abs/2004.04906

Cross-Encoders for Detailed Similarity Scoring:
Humeau, S., Shuster, K., Lachaux, M. A., & Weston, J. (2019). Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate
Multi-sentence Scoring. arXiv:1905.01969. The poly-encoder architecture introduced here incorporates aspects of both dual and cross-encoders,
offering a balance between speed and accuracy for matching tasks. https://arxiv.org/abs/1905.01969

4. Semantic Search Systems
Semantic Search with Transformers:

Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., Wu, C., Croft, W. B., & Cheng, X. (2020). A Deep Look into Neural Ranking Models for Information
Retrieval. Information Processing & Management. This review covers deep learning approaches to information retrieval, including the use of
Transformer models for understanding query intent and document relevance in a semantic search context.
https://www.sciencedirect.com/science/article/pii/S0306457319302390

54

https://arxiv.org/abs/1901.04085
https://dl.acm.org/doi/abs/10.1145/3331184.3331317
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/1905.01969
https://www.sciencedirect.com/science/article/pii/S0306457319302390

Evaluating RAG-based LLMs

55
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

Evaluating RAG: Context Relevance

• Is the content retrieved from the vector
database relevant to the query?
• Irrelevant information will be likely

integrated into the response, contributing
to hallucinations

56
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

Evaluating RAG: Groundedness

• The context was provided to the LLM as
part of the prompt
• Did the LLM response incorporate the

context appropriately?
• Can we support each claim in the

response from the context?

57
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

Evaluating RAG: Answer Relevance

• Is the answer relevant to the original
question?
• Prompt is augmented with context.
• Did the context cause the LLM to stray

away from the question?

58
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

Growing ecosystem of
tools to do evaluation

59

Retrieval-Augmented Generation (RAG)
RAG systems have evolved from Naive RAG to Advanced RAG and Modular RAG. This evolution
has occurred to address certain limitations around performance, cost, and efficiency.

Image source (Kojima et al., 2022)

https://www.promptingguide.ai/research/rag

Pre-Retrieval Improvements
• Enhance indexed data quality, optimize chunk size and

overlap.
• Rewrite user queries for better match in vector database.
• Use metadata and pronoun replacement to maintain context

in chunks.

Retrieval Enhancements
• Explore alternative search methods (e.g., full-text, graph-

based).
• Experiment with different embedding models for task

suitability.
• Implement hierarchical and recursive search for precision.

Post-Retrieval Optimization
• Re-rank or score chunks for relevance; compress information

from multiple chunks.
• Employ smaller, faster models for specific steps to reduce

latency.
• Parallelize intermediate steps and use caching for common

queries.

Balancing Quality and Latency
• Opt for parallel processing, smaller models, and caching

strategies.
• Tailor RAG approach based on the complexity of user

queries and the nature of tasks.

https://arxiv.org/abs/2205.11916
https://www.promptingguide.ai/research/rag

Model Finetuning
• Large foundation models are pre-trained on general tasks

• Might not do as well on specialized tasks
• Try prompt engineering and retrieval augmentation first

• Good news: can fine tune model with much smaller dataset to adapt
to downstream tasks

• Fine tuned model is same size as original.
• Resource Intensive: Can take very large memory and compute resources to

fine tune
• Storage Demands: If you have n downstream tasks, you will have n copies of

your large model.

61

Full Finetuning Example

62

Text classification performance on the Stanford Natural Language Inference (SNLI) Corpus.
Ordered pairs of sentences are classified by their logical relationship: either contradicted,
entailed (implied), or neutral. Default fine-tuning parameters were used when not otherwise
specified.

https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning

https://nlp.stanford.edu/projects/snli/
https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning

🤗 HuggingFace – Fine-tune Pretrained Model Tutorials

• Finetune for Sentiment Analysis Example (broken??)
• https://huggingface.co/docs/transformers/training
• Finetune bert-base-cased (109M params, FP32, 436MB) on Yelp review

dataset (650K reviews, 323 MB)
• Finetune for text classification example

• https://github.com/huggingface/notebooks/blob/main/examples/text_classifi
cation.ipynb

• preprocess the data and fine-tune a pretrained model on any GLUE task
• Finetune for question answering

• https://github.com/huggingface/notebooks/blob/main/examples/question_a
nswering.ipynb

• preprocess the data and fine-tune a pretrained model on SQUAD

63

https://huggingface.co/docs/transformers/training
https://huggingface.co/google-bert/bert-base-cased
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb

Model Finetuning Drawbacks
• Fine tuned model is same size as original.

• Resource Intensive: Can take very large memory and compute resources to
fine tune

• Storage Demands: If you have n downstream tasks, you will have n copies of
your large model

64

Model Finetuning Drawbacks
• Fine tuned model is same size as original.

• Resource Intensive: Can take very large memory and compute resources to
fine tune

• Storage Demands: If you have n downstream tasks, you will have n copies of
your large model

Solution is to update aspects of the model, rather than entire model
• Low rank adaptation of the weight updates -- LoRA
• Train and concatenated soft prompts -- Prompt Tuning

65

Topics

• Full finetuning
• Low rank adaptation
• Prompt tuning

66

Low Rank Adaptation
• Deploying independent instances of

downstream fine-tuned models can be
prohibitive (e.g. GPT3, 175B params,
700GB@fp32)
• Instead, freeze the pre-trained model and

inject trainable rank decomposition matrices
into each layer
• Reduce trainable parameters by 10,000x!!
• On-par or better than finetuning on RoBERTa,

DeBERTa, GPT-2 and GPT-3

67E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

Low Rank Adaptation
• Aghajanyan et al show that pretrained language

models have a low “intrinsic dimension”
• Updates to weight matrices likely have a low

“intrinsic rank” during training
• Found that even very low rank (e.g. r=1 or2) with

GPT-3 175B is effective where full rank
(embedding dimension) is 12,288

68

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685
A. Aghajanyan et al., “Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning”. arXiv:2012.13255 [cs],
December 2020. URL http://arxiv.org/abs/2012.13255.

http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2012.13255

Reminder: Rank of a Matrix

• The number of linearly independent rows or columns of a matrix

• Determines the dimension of the vector space spanned by the
column vectors

• A measure of “dimensionality”

69

LoRA: Method
Say you have pre-trained weights,

 𝑊) ∈ ℝ*×+

Represent update with a low rank decomposition
 𝑊) + ∆𝑊 = 𝑊) + 𝐵𝐴	,
where 𝐵 ∈ ℝ*×, , 𝐴 ∈ ℝ,×+ and the rank 𝑟	 ≪
min 𝑑, 𝑘 , is much less than the full rank.
For updates,

ℎ = 𝑊) + ∆𝑊 𝑥 = 𝑊)𝑥 + ∆𝑊𝑥 = 𝑊)𝑥 + 𝐵𝐴𝑥
Initialize A to random gaussian and B to zero

70E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

LoRA: Method
LoRA can be viewed as a generalization of full
finetuning, since using full rank = full finetuning

Updates:
ℎ = 𝑊) + ∆𝑊 𝑥 = 𝑊)𝑥 + ∆𝑊𝑥 = 𝑊)𝑥 + 𝐵𝐴𝑥

Generally only applied to 𝑊- and 𝑊. matrices.

71E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

LoRA Results / Comparisons

72

GLUE benchmark – measure across 9 language tasks
BitFit – train only the bias vectors
Adpt – Inserts adaptation layer between self-attention and MLP module

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685
† indicates runs configured in a setup similar to Houlsby et al. (2019) for a fair comparison.

http://arxiv.org/abs/2106.09685

LoRA Results / Comparisons

73

GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with
comparable or fewer trainable parameters. Confidence intervals are shown for
experiments we ran. * indicates numbers published in prior works.

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

Understanding the Low-Rank Updates

1. Given a parameter budget constraint, which subset of weight
matrices in a pre-trained Transformer should we adapt to maximize
downstream performance?

2. Is the “optimal” adaptation matrix ∆W really rank-deficient? If so,
what is a good rank to use in practice?

74E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

1) Which weight matrices to target?

75

Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting
both Wq and Wv gives the best performance overall. We find the standard deviation
across random seeds to be consistent for a given dataset, which we report in the first
column.

Rank of 16 on 2 matrices or even 4 on 4 matrices is sufficient.

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

2) What is the optimal rank?

76

“Validation accuracy on WikiSQL and MultiNLI with different rank r. To our
surprise, a rank as small as one suffices for adapting both Wq and Wv on
these datasets while training Wq alone needs a larger r.”

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

To Dive Deeper

From Sebastian Raschka
• LLM Training: RLHF and its Alternatives
• LLMs from Scratch book and repo
• Understanding Reasoning LLMs (CoT, DeepSeek, etc.)

77

https://magazine.sebastianraschka.com/p/llm-training-rlhf-and-its-alternatives
https://github.com/rasbt/LLMs-from-scratch
https://magazine.sebastianraschka.com/p/understanding-reasoning-llms

Next Time
• back to book sequence on

• GANs
• VAEs
• Diffusion Models
• Graph NNs

78ChatGPT

Link

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

