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Topics

• LLM Training Process
• Pre-training
• Classifier Fine-Tuning
• Instruction (Chat) Fine-Tuning
• Preference Tuning

• Evaluating LLMs
• Improving LLMs with RAG

• Evaluating LLMs

• Parameter Efficient Fine-Tuning: Low-Rank Adaptation
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LLM Generative Flow
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LLM Generative Flow

• How do we improve the response?
• How do we evaluate the response?

5

Token
Encoding & 

Linear 
Embedding

Token 
DecodingTransformer Token 

Selection

Query Response



6LLMs-from-scratch, Sebastian Raschka

https://github.com/rasbt/LLMs-from-scratch


7https://magazine.sebastianraschka.com/p/understanding-reasoning-llms 
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https://magazine.sebastianraschka.com/p/understanding-reasoning-llms


How do we build a chat model?

8
State of GPT, Andrej Karpathy, MS Build Keynote 

https://youtu.be/bZQun8Y4L2A?si=Sv66kPGvIVgNQKDY


Pre-Training

9LLMs-from-scratch, Sebastian Raschka

https://github.com/rasbt/LLMs-from-scratch


10S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK
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16S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK


Classifier Finetuning

17S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK


18S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK


Example: Spam/Ham Classifier

19S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK
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27S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK


Alpaca Instruction Tuning Dataset

28Alpaca instruction tuning dataset: 50K,   LIMA instruction tuning: 1K



LIMA: Finetuning with only 1K instructions
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Refine responses for style or safety
Reward preferred responses

30S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK


Generative LLM Evaluations

Evaluate for
• Accuracy (is it factual or hallucinated?)
• Relevance (is it answering the question?)
• Bias, Toxicity (Is it fair? Or even worse is it racist or toxic?)
• Diversity of Response (does it always give same response? or equally 

useful diverse responses?)

31



Ways to Evaluate
• Find a benchmark that matches your task

• HellaSwag (which evaluates how well an LLM can complete a sentence), 
• TruthfulQA (measuring truthfulness of model responses), and 
• MMLU (which measures how well the LLM can multitask), 
• WinoGrande (commonsense reasoning), 
• GSM8K, (arithmetic reasoning), etc.

• Create your own evaluation prompt/response pairs – 
• need thousands!

• Use an LLM to evaluate your LLM!

32
See: https://arize.com/blog-course/llm-evaluation-the-definitive-guide/ for a nice overview 

https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2009.03300
https://winogrande.allenai.org/
https://github.com/dvlab-research/MR-GSM8K
https://arize.com/blog-course/llm-evaluation-the-definitive-guide/


33S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK


34S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK


35S. Raschka, "Developing an LLM: Building, Training, Finetuning" 

https://youtu.be/kPGTx4wcm_w?si=2sFKkDLmshHd5xaK


Model vs System Evals

36
See: https://arize.com/blog-course/llm-evaluation-the-definitive-guide/ for a nice overview 

Useful for choosing a model or deciding when 
to switch.

Useful for prompt tuning and monitoring over time.

https://arize.com/blog-course/llm-evaluation-the-definitive-guide/


37https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard 

Open LLM Leaderboard

Archived!

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


HF OpenLLM leaderboard became too easy
Models plateaued

38https://huggingface.co/spaces/open-llm-leaderboard/blog 

https://huggingface.co/spaces/open-llm-leaderboard/blog


HF OpenLLM leaderboard became too easy
Models plateaued

39https://huggingface.co/spaces/open-llm-leaderboard/blog 

https://huggingface.co/spaces/open-llm-leaderboard/blog


Crowd-Sourcing Evaluations
User Feedback

40

https://lmarena.ai/?leaderboard 

https://lmarena.ai/?leaderboard


lmsys.org evolved

41



Topics

• Generative LLM flow and how to evaluate
• Improve LLM performance by prompting strategies
• Improving with retrieval augmentation
• Building more complex systems with LLMs: ”Cognitive Architectures”
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Retrieval-Augmented Generation (RAG)
RAG enhances LLMs by referencing external knowledge to generate relevant 
responses.
• Integrates external data into LLM text generation.
• Reduces hallucination, improves response relevance.
• Works with

• Unstructured data (e.g. documents)
• Structured data (e.g. SQL data)
• Code (e.g. python)



RAG Architecture

Typical RAG application has two main components:
• Loading and Indexing: 

• A pipeline for ingesting data from a source and indexing it
• Usually happens offline

• Retrieval and Generation: 
• Takes user query at run time and retrieves relevant data from the index and 

passes it to the model

44
https://python.langchain.com/docs/use_cases/question_answering/ 

https://python.langchain.com/docs/use_cases/question_answering/


RAG – Loading and Indexing

45
https://python.langchain.com/docs/use_cases/question_answering/ 

https://python.langchain.com/docs/use_cases/question_answering/


RAG – Load
Load the data, e.g.
• PDFs
• HTML
• Plain text
• Images, video, audio
• Structured data (SQL, CSV/TSV, …)
• JSON
• URLs
• …

46https://python.langchain.com/docs/use_cases/question_answering/ 

See for example: https://python.langchain.com/docs/modules/data_connection/document_loaders/ 

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/document_loaders/


RAG – Split
Break large documents into 
smaller chunks.
Easier to:
• index
• pass to model
• search
• fit into model’s context window

47https://python.langchain.com/docs/use_cases/question_answering/ 

See for example: https://python.langchain.com/docs/modules/data_connection/document_transformers/ 

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/document_transformers/


RAG – Embed
• Encode (e.g. with Byte Pair 

Encoding) and 
• Transform to embedding vectors 

with the learned embedding 
model.

48https://python.langchain.com/docs/use_cases/question_answering/ 

See for example: https://python.langchain.com/docs/modules/data_connection/text_embedding/ 

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/text_embedding/


RAG – Store
• Store the data in some kind of Vector Store
• e.g. Chroma, FAISS, Lance, Pinecone, etc…

49https://python.langchain.com/docs/use_cases/question_answering/ 

See for example: https://python.langchain.com/docs/modules/data_connection/vectorstores/ 

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/vectorstores/


RAG – Retrieval and Generation

50https://python.langchain.com/docs/use_cases/question_answering/ 

https://python.langchain.com/docs/use_cases/question_answering/


RAG – Retrieval

51https://python.langchain.com/docs/modules/data_connection/vectorstores/ 

https://python.langchain.com/docs/modules/data_connection/vectorstores/


RAG – Retrieval Similarity Measure

52

L2 Norm*: 𝑑 = ∑! 𝐴! − 𝐵! "

Inner Product: 𝑑 = 1 − ∑!(𝐴!×𝐵!)

Cosine Similarity: 1 − ∑!(%!×'!)

∑! %!
" ∑!('!

"

https://docs.trychroma.com/usage-guide#changing-the-distance-function 

* Default on Chroma Vector Database

https://docs.trychroma.com/usage-guide


Is simple similarity measure 
between query and document 
the best approach?

53



RAG – Other Query-Document Matching Approaches
1. BERT and Variants for Query-Document Matching

BERT:
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 
arXiv:1810.04805. This foundational paper introduces BERT and its methodology for language understanding, which has been widely applied to 
information retrieval tasks.

Application in Information Retrieval:
Nogueira, R., & Cho, K. (2019). Passage Re-ranking with BERT. arXiv:1901.04085. This work explores how BERT can be used for re-ranking search results, 
demonstrating its effectiveness in improving information retrieval systems. https://arxiv.org/abs/1901.04085 

2. Fine-tuning for Specific Tasks
Fine-Tuning BERT for Search:

MacAvaney, S., Cohan, A., & Goharian, N. (2019). CEDR: Contextualized Embeddings for Document Ranking. SIGIR. This paper discusses fine-tuning BERT 
with contextual embeddings specifically for document ranking, providing insights into adapting Transformer models for search tasks. 
https://dl.acm.org/doi/abs/10.1145/3331184.3331317 

3. Dual-encoder and Cross-encoder Architectures
Dual-Encoders for Efficient Retrieval:

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020). Dense Passage Retrieval for Open-Domain Question Answering. 
EMNLP. This paper introduces a method using dense vector representations for passages and questions to improve open-domain question answering. 
https://arxiv.org/abs/2004.04906 

Cross-Encoders for Detailed Similarity Scoring:
Humeau, S., Shuster, K., Lachaux, M. A., & Weston, J. (2019). Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate 
Multi-sentence Scoring. arXiv:1905.01969. The poly-encoder architecture introduced here incorporates aspects of both dual and cross-encoders, 
offering a balance between speed and accuracy for matching tasks. https://arxiv.org/abs/1905.01969 

4. Semantic Search Systems
Semantic Search with Transformers:

Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., Wu, C., Croft, W. B., & Cheng, X. (2020). A Deep Look into Neural Ranking Models for Information 
Retrieval. Information Processing & Management. This review covers deep learning approaches to information retrieval, including the use of 
Transformer models for understanding query intent and document relevance in a semantic search context. 
https://www.sciencedirect.com/science/article/pii/S0306457319302390 

54

https://arxiv.org/abs/1901.04085
https://dl.acm.org/doi/abs/10.1145/3331184.3331317
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/1905.01969
https://www.sciencedirect.com/science/article/pii/S0306457319302390


Evaluating RAG-based LLMs

55
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/ 

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/


Evaluating RAG: Context Relevance

• Is the content retrieved from the vector 
database relevant to the query?
• Irrelevant information will be likely 

integrated into the response, contributing 
to hallucinations

56
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/ 

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/


Evaluating RAG: Groundedness

• The context was provided to the LLM as 
part of the prompt
• Did the LLM response incorporate the 

context appropriately?
• Can we support each claim in the 

response from the context?

57
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/ 

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/


Evaluating RAG: Answer Relevance

• Is the answer relevant to the original 
question?
• Prompt is augmented with context.
• Did the context cause the LLM to stray 

away from the question?

58
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/ 

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/


Growing ecosystem of  
tools to do evaluation

59



Retrieval-Augmented Generation (RAG)
RAG systems have evolved from Naive RAG to Advanced RAG and Modular RAG. This evolution 
has occurred to address certain limitations around performance, cost, and efficiency.

Image source (Kojima et al., 2022)

https://www.promptingguide.ai/research/rag 

Pre-Retrieval Improvements
• Enhance indexed data quality, optimize chunk size and 

overlap.
• Rewrite user queries for better match in vector database.
• Use metadata and pronoun replacement to maintain context 

in chunks.

Retrieval Enhancements
• Explore alternative search methods (e.g., full-text, graph-

based).
• Experiment with different embedding models for task 

suitability.
• Implement hierarchical and recursive search for precision.

Post-Retrieval Optimization
• Re-rank or score chunks for relevance; compress information 

from multiple chunks.
• Employ smaller, faster models for specific steps to reduce 

latency.
• Parallelize intermediate steps and use caching for common 

queries.

Balancing Quality and Latency
• Opt for parallel processing, smaller models, and caching 

strategies.
• Tailor RAG approach based on the complexity of user 

queries and the nature of tasks.

https://arxiv.org/abs/2205.11916
https://www.promptingguide.ai/research/rag


Model Finetuning
• Large foundation models are pre-trained on general tasks

• Might not do as well on specialized tasks
• Try prompt engineering and retrieval augmentation first

• Good news: can fine tune model with much smaller dataset to adapt 
to downstream tasks

• Fine tuned model is same size as original. 
• Resource Intensive: Can take very large memory and compute resources to 

fine tune
• Storage Demands: If you have n downstream tasks, you will have n copies of 

your large model.

61



Full Finetuning Example

62

Text classification performance on the Stanford Natural Language Inference (SNLI) Corpus. 
Ordered pairs of sentences are classified by their logical relationship: either contradicted, 
entailed (implied), or neutral. Default fine-tuning parameters were used when not otherwise 
specified.

https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning 

https://nlp.stanford.edu/projects/snli/
https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning


🤗 HuggingFace – Fine-tune Pretrained Model Tutorials

• Finetune for Sentiment Analysis Example (broken??)
• https://huggingface.co/docs/transformers/training 
• Finetune bert-base-cased (109M params, FP32, 436MB) on Yelp review 

dataset (650K reviews, 323 MB)
• Finetune for text classification example

• https://github.com/huggingface/notebooks/blob/main/examples/text_classifi
cation.ipynb 

• preprocess the data and fine-tune a pretrained model on any GLUE task
• Finetune for question answering

• https://github.com/huggingface/notebooks/blob/main/examples/question_a
nswering.ipynb 

• preprocess the data and fine-tune a pretrained model on SQUAD

63

https://huggingface.co/docs/transformers/training
https://huggingface.co/google-bert/bert-base-cased
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb


Model Finetuning Drawbacks
• Fine tuned model is same size as original. 

• Resource Intensive: Can take very large memory and compute resources to 
fine tune

• Storage Demands: If you have n downstream tasks, you will have n copies of 
your large model

64



Model Finetuning Drawbacks
• Fine tuned model is same size as original. 

• Resource Intensive: Can take very large memory and compute resources to 
fine tune

• Storage Demands: If you have n downstream tasks, you will have n copies of 
your large model

Solution is to update aspects of the model, rather than entire model
• Low rank adaptation of the weight updates -- LoRA
• Train and concatenated soft prompts -- Prompt Tuning

65



Topics

• Full finetuning
• Low rank adaptation
• Prompt tuning

66



Low Rank Adaptation
• Deploying independent instances of 

downstream fine-tuned models can be 
prohibitive (e.g. GPT3, 175B params, 
700GB@fp32)
• Instead, freeze the pre-trained model and 

inject trainable rank decomposition matrices 
into each layer
• Reduce trainable parameters by 10,000x!!
• On-par or better than finetuning on RoBERTa, 

DeBERTa, GPT-2 and GPT-3

67E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685


Low Rank Adaptation
• Aghajanyan et al show that pretrained language 

models have a low “intrinsic dimension”
• Updates to weight matrices likely have a low 

“intrinsic rank” during training
• Found that even very low rank (e.g. r=1 or2) with 

GPT-3 175B is effective where full rank 
(embedding dimension) is 12,288

68

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685
A. Aghajanyan et al., “Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning”. arXiv:2012.13255 [cs], 
December 2020. URL http://arxiv.org/abs/2012.13255. 

http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2012.13255


Reminder: Rank of a Matrix

• The number of linearly independent rows or columns of a matrix

• Determines the dimension of the vector space spanned by the 
column vectors

• A measure of “dimensionality”

69



LoRA: Method
Say you have pre-trained weights, 

  𝑊) ∈ ℝ*×+  

Represent update with a low rank decomposition
  𝑊) + ∆𝑊 = 𝑊) + 𝐵𝐴	, 
where 𝐵 ∈ ℝ*×, , 𝐴 ∈ ℝ,×+  and the rank 𝑟	 ≪
min 𝑑, 𝑘 , is much less than the full rank.
For updates, 

ℎ = 𝑊) + ∆𝑊 𝑥 = 𝑊)𝑥 + ∆𝑊𝑥 = 𝑊)𝑥 + 𝐵𝐴𝑥
Initialize A to random gaussian and B to zero

70E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021.  http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685


LoRA: Method
LoRA can be viewed as a generalization of full 
finetuning, since using full rank = full finetuning

Updates: 
ℎ = 𝑊) + ∆𝑊 𝑥 = 𝑊)𝑥 + ∆𝑊𝑥 = 𝑊)𝑥 + 𝐵𝐴𝑥

Generally only applied to 𝑊-  and 𝑊.  matrices.

71E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021.  http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685


LoRA Results / Comparisons

72

GLUE benchmark – measure across 9 language tasks
BitFit – train only the bias vectors
Adpt – Inserts adaptation layer between self-attention and MLP module

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021.  http://arxiv.org/abs/2106.09685
† indicates runs configured in a setup similar to Houlsby et al. (2019) for a fair comparison.

http://arxiv.org/abs/2106.09685


LoRA Results / Comparisons

73

GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG 
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with 
comparable or fewer trainable parameters. Confidence intervals are shown for 
experiments we ran. * indicates numbers published in prior works.

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021.  http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685


Understanding the Low-Rank Updates

1. Given a parameter budget constraint, which subset of weight 
matrices in a pre-trained Transformer should we adapt to maximize 
downstream performance? 

2. Is the “optimal” adaptation matrix ∆W really rank-deficient? If so, 
what is a good rank to use in practice? 

74E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021.  http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685


1) Which weight matrices to target?

75

Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of 
attention weights in GPT-3, given the same number of trainable parameters. Adapting 
both Wq and Wv gives the best performance overall. We find the standard deviation 
across random seeds to be consistent for a given dataset, which we report in the first 
column.

Rank of 16 on 2 matrices or even 4 on 4 matrices is sufficient.

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021.  http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685


2) What is the optimal rank?

76

“Validation accuracy on WikiSQL and MultiNLI with different rank r. To our 
surprise, a rank as small as one suffices for adapting both Wq and Wv on 
these datasets while training Wq alone needs a larger r.”

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021.  http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685


To Dive Deeper

From Sebastian Raschka
• LLM Training: RLHF and its Alternatives
• LLMs from Scratch book and repo
• Understanding Reasoning LLMs (CoT, DeepSeek, etc.)

77

https://magazine.sebastianraschka.com/p/llm-training-rlhf-and-its-alternatives
https://github.com/rasbt/LLMs-from-scratch
https://magazine.sebastianraschka.com/p/understanding-reasoning-llms


Next Time
• back to book sequence on

• GANs
• VAEs
• Diffusion Models
• Graph NNs

78ChatGPT

Link

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

